3.7.10 \(\int (a+\frac {b}{x^2}) (c+\frac {d}{x^2})^{3/2} x^6 \, dx\)

Optimal. Leaf size=53 \[ \frac {x^5 \left (c+\frac {d}{x^2}\right )^{5/2} (7 b c-2 a d)}{35 c^2}+\frac {a x^7 \left (c+\frac {d}{x^2}\right )^{5/2}}{7 c} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 53, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {453, 264} \begin {gather*} \frac {x^5 \left (c+\frac {d}{x^2}\right )^{5/2} (7 b c-2 a d)}{35 c^2}+\frac {a x^7 \left (c+\frac {d}{x^2}\right )^{5/2}}{7 c} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b/x^2)*(c + d/x^2)^(3/2)*x^6,x]

[Out]

((7*b*c - 2*a*d)*(c + d/x^2)^(5/2)*x^5)/(35*c^2) + (a*(c + d/x^2)^(5/2)*x^7)/(7*c)

Rule 264

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a
*c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]

Rule 453

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(c*(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1))/(a*e*(m + 1)), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rubi steps

\begin {align*} \int \left (a+\frac {b}{x^2}\right ) \left (c+\frac {d}{x^2}\right )^{3/2} x^6 \, dx &=\frac {a \left (c+\frac {d}{x^2}\right )^{5/2} x^7}{7 c}+\frac {(7 b c-2 a d) \int \left (c+\frac {d}{x^2}\right )^{3/2} x^4 \, dx}{7 c}\\ &=\frac {(7 b c-2 a d) \left (c+\frac {d}{x^2}\right )^{5/2} x^5}{35 c^2}+\frac {a \left (c+\frac {d}{x^2}\right )^{5/2} x^7}{7 c}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 44, normalized size = 0.83 \begin {gather*} \frac {x \sqrt {c+\frac {d}{x^2}} \left (c x^2+d\right )^2 \left (5 a c x^2-2 a d+7 b c\right )}{35 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x^2)*(c + d/x^2)^(3/2)*x^6,x]

[Out]

(Sqrt[c + d/x^2]*x*(d + c*x^2)^2*(7*b*c - 2*a*d + 5*a*c*x^2))/(35*c^2)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.08, size = 44, normalized size = 0.83 \begin {gather*} \frac {x \sqrt {c+\frac {d}{x^2}} \left (c x^2+d\right )^2 \left (5 a c x^2-2 a d+7 b c\right )}{35 c^2} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a + b/x^2)*(c + d/x^2)^(3/2)*x^6,x]

[Out]

(Sqrt[c + d/x^2]*x*(d + c*x^2)^2*(7*b*c - 2*a*d + 5*a*c*x^2))/(35*c^2)

________________________________________________________________________________________

fricas [A]  time = 0.41, size = 80, normalized size = 1.51 \begin {gather*} \frac {{\left (5 \, a c^{3} x^{7} + {\left (7 \, b c^{3} + 8 \, a c^{2} d\right )} x^{5} + {\left (14 \, b c^{2} d + a c d^{2}\right )} x^{3} + {\left (7 \, b c d^{2} - 2 \, a d^{3}\right )} x\right )} \sqrt {\frac {c x^{2} + d}{x^{2}}}}{35 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)*(c+d/x^2)^(3/2)*x^6,x, algorithm="fricas")

[Out]

1/35*(5*a*c^3*x^7 + (7*b*c^3 + 8*a*c^2*d)*x^5 + (14*b*c^2*d + a*c*d^2)*x^3 + (7*b*c*d^2 - 2*a*d^3)*x)*sqrt((c*
x^2 + d)/x^2)/c^2

________________________________________________________________________________________

giac [A]  time = 0.18, size = 72, normalized size = 1.36 \begin {gather*} -\frac {{\left (7 \, b c d^{\frac {5}{2}} - 2 \, a d^{\frac {7}{2}}\right )} \mathrm {sgn}\relax (x)}{35 \, c^{2}} + \frac {5 \, {\left (c x^{2} + d\right )}^{\frac {7}{2}} a \mathrm {sgn}\relax (x) + 7 \, {\left (c x^{2} + d\right )}^{\frac {5}{2}} b c \mathrm {sgn}\relax (x) - 7 \, {\left (c x^{2} + d\right )}^{\frac {5}{2}} a d \mathrm {sgn}\relax (x)}{35 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)*(c+d/x^2)^(3/2)*x^6,x, algorithm="giac")

[Out]

-1/35*(7*b*c*d^(5/2) - 2*a*d^(7/2))*sgn(x)/c^2 + 1/35*(5*(c*x^2 + d)^(7/2)*a*sgn(x) + 7*(c*x^2 + d)^(5/2)*b*c*
sgn(x) - 7*(c*x^2 + d)^(5/2)*a*d*sgn(x))/c^2

________________________________________________________________________________________

maple [A]  time = 0.04, size = 45, normalized size = 0.85 \begin {gather*} \frac {\left (\frac {c \,x^{2}+d}{x^{2}}\right )^{\frac {3}{2}} \left (5 a \,x^{2} c -2 a d +7 b c \right ) \left (c \,x^{2}+d \right ) x^{3}}{35 c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x^2)*(c+d/x^2)^(3/2)*x^6,x)

[Out]

1/35*((c*x^2+d)/x^2)^(3/2)*x^3*(5*a*c*x^2-2*a*d+7*b*c)*(c*x^2+d)/c^2

________________________________________________________________________________________

maxima [A]  time = 0.65, size = 55, normalized size = 1.04 \begin {gather*} \frac {b {\left (c + \frac {d}{x^{2}}\right )}^{\frac {5}{2}} x^{5}}{5 \, c} + \frac {{\left (5 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {7}{2}} x^{7} - 7 \, {\left (c + \frac {d}{x^{2}}\right )}^{\frac {5}{2}} d x^{5}\right )} a}{35 \, c^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^2)*(c+d/x^2)^(3/2)*x^6,x, algorithm="maxima")

[Out]

1/5*b*(c + d/x^2)^(5/2)*x^5/c + 1/35*(5*(c + d/x^2)^(7/2)*x^7 - 7*(c + d/x^2)^(5/2)*d*x^5)*a/c^2

________________________________________________________________________________________

mupad [B]  time = 4.63, size = 77, normalized size = 1.45 \begin {gather*} \sqrt {c+\frac {d}{x^2}}\,\left (\frac {x^5\,\left (7\,b\,c^3+8\,a\,d\,c^2\right )}{35\,c^2}-\frac {x\,\left (2\,a\,d^3-7\,b\,c\,d^2\right )}{35\,c^2}+\frac {a\,c\,x^7}{7}+\frac {d\,x^3\,\left (a\,d+14\,b\,c\right )}{35\,c}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^6*(a + b/x^2)*(c + d/x^2)^(3/2),x)

[Out]

(c + d/x^2)^(1/2)*((x^5*(7*b*c^3 + 8*a*c^2*d))/(35*c^2) - (x*(2*a*d^3 - 7*b*c*d^2))/(35*c^2) + (a*c*x^7)/7 + (
d*x^3*(a*d + 14*b*c))/(35*c))

________________________________________________________________________________________

sympy [B]  time = 5.95, size = 498, normalized size = 9.40 \begin {gather*} \frac {15 a c^{6} d^{\frac {9}{2}} x^{10} \sqrt {\frac {c x^{2}}{d} + 1}}{105 c^{5} d^{4} x^{4} + 210 c^{4} d^{5} x^{2} + 105 c^{3} d^{6}} + \frac {33 a c^{5} d^{\frac {11}{2}} x^{8} \sqrt {\frac {c x^{2}}{d} + 1}}{105 c^{5} d^{4} x^{4} + 210 c^{4} d^{5} x^{2} + 105 c^{3} d^{6}} + \frac {17 a c^{4} d^{\frac {13}{2}} x^{6} \sqrt {\frac {c x^{2}}{d} + 1}}{105 c^{5} d^{4} x^{4} + 210 c^{4} d^{5} x^{2} + 105 c^{3} d^{6}} + \frac {3 a c^{3} d^{\frac {15}{2}} x^{4} \sqrt {\frac {c x^{2}}{d} + 1}}{105 c^{5} d^{4} x^{4} + 210 c^{4} d^{5} x^{2} + 105 c^{3} d^{6}} + \frac {12 a c^{2} d^{\frac {17}{2}} x^{2} \sqrt {\frac {c x^{2}}{d} + 1}}{105 c^{5} d^{4} x^{4} + 210 c^{4} d^{5} x^{2} + 105 c^{3} d^{6}} + \frac {8 a c d^{\frac {19}{2}} \sqrt {\frac {c x^{2}}{d} + 1}}{105 c^{5} d^{4} x^{4} + 210 c^{4} d^{5} x^{2} + 105 c^{3} d^{6}} + \frac {a d^{\frac {3}{2}} x^{4} \sqrt {\frac {c x^{2}}{d} + 1}}{5} + \frac {a d^{\frac {5}{2}} x^{2} \sqrt {\frac {c x^{2}}{d} + 1}}{15 c} - \frac {2 a d^{\frac {7}{2}} \sqrt {\frac {c x^{2}}{d} + 1}}{15 c^{2}} + \frac {b c \sqrt {d} x^{4} \sqrt {\frac {c x^{2}}{d} + 1}}{5} + \frac {2 b d^{\frac {3}{2}} x^{2} \sqrt {\frac {c x^{2}}{d} + 1}}{5} + \frac {b d^{\frac {5}{2}} \sqrt {\frac {c x^{2}}{d} + 1}}{5 c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**2)*(c+d/x**2)**(3/2)*x**6,x)

[Out]

15*a*c**6*d**(9/2)*x**10*sqrt(c*x**2/d + 1)/(105*c**5*d**4*x**4 + 210*c**4*d**5*x**2 + 105*c**3*d**6) + 33*a*c
**5*d**(11/2)*x**8*sqrt(c*x**2/d + 1)/(105*c**5*d**4*x**4 + 210*c**4*d**5*x**2 + 105*c**3*d**6) + 17*a*c**4*d*
*(13/2)*x**6*sqrt(c*x**2/d + 1)/(105*c**5*d**4*x**4 + 210*c**4*d**5*x**2 + 105*c**3*d**6) + 3*a*c**3*d**(15/2)
*x**4*sqrt(c*x**2/d + 1)/(105*c**5*d**4*x**4 + 210*c**4*d**5*x**2 + 105*c**3*d**6) + 12*a*c**2*d**(17/2)*x**2*
sqrt(c*x**2/d + 1)/(105*c**5*d**4*x**4 + 210*c**4*d**5*x**2 + 105*c**3*d**6) + 8*a*c*d**(19/2)*sqrt(c*x**2/d +
 1)/(105*c**5*d**4*x**4 + 210*c**4*d**5*x**2 + 105*c**3*d**6) + a*d**(3/2)*x**4*sqrt(c*x**2/d + 1)/5 + a*d**(5
/2)*x**2*sqrt(c*x**2/d + 1)/(15*c) - 2*a*d**(7/2)*sqrt(c*x**2/d + 1)/(15*c**2) + b*c*sqrt(d)*x**4*sqrt(c*x**2/
d + 1)/5 + 2*b*d**(3/2)*x**2*sqrt(c*x**2/d + 1)/5 + b*d**(5/2)*sqrt(c*x**2/d + 1)/(5*c)

________________________________________________________________________________________